设为首页 - 加入收藏
广告 1000x90
您的当前位置:311211黄大仙生肖资料 > 卷积 > 正文

腾讯优图推出卷积神经网络深度学习算法模型被Oncologist收录

来源:未知 编辑:admin 时间:2019-06-07

  腾讯优图实验室联合广东省肺癌研究所吴一龙教授/钟文昭教授团队,与清华大学以及国内多家中心呼吸科/放射科团队等共同开发了基于卷积神经网络算法的肺结节诊断模型,近日,该初步研究成果已被全球癌症领域知名医学期刊《肿瘤学家》(《The Oncologist》)收录并全文发表。

  随着低剂量螺旋CT(LDCT)的普及,检出了越来越多的肺部结节,使患者得以早期诊断,早期手术临床治愈率越高。然而,将CT作为筛查手段仍存在较高假阳性率(即CT发现的结节可能不一定是恶性,或是极度惰性生长肿瘤),此外激增的CT分析工作也大大占据放射科医师有限的工作时间和精力。近年来机器学习算法在医疗领域的大展拳脚(糖尿病视网膜病变/皮肤病/甲状腺结节等),基于卷积神经网络算法(机器学习算法一类)的肺结节诊断模型有望解决这一难题。此次腾讯优图联合吴一龙教授/钟文昭教授团队及多个中心等推出的基于卷积神经网络算法的肺结节诊断模型,可有望辅助医生提高结节检出率的同时兼顾良恶性诊断准确率,大大降低放射科医师日常CT读取工作量,同时使得更多患者能够及时得到早期治疗干预,进一步降低肺癌相关死亡率。

  作为腾讯觅影核心AI技术的提供方,腾讯优图实验室将持续通过腾讯觅影,与更多医院及医疗机构展开合作,让技术真正应用落地。目前,腾讯觅影已与国内超过100多家顶级三甲医院达成合作,共同推进AI在医疗领域的研究和应用。此外,依托腾讯云服务器,腾讯优图具备进行上亿规模的模型训练及合作接入,为技术落地提供有力的服务保障。未来,AI+医学有望在推动各级医疗系统诊断同质化,减轻医生工作量,提升诊断准确率和效率方面,发挥更大的作用。

  预处理模块:从CT切片中分离出包含肺组织的图像区域,阈值0HU去除无关组织(骨与软组织),接着使用自适应阈值图像分割方法,建立3维模型;重建3维图象为标准化的切片厚度和分辨率,以避免不同CT机器的误差。

  结节诊断模块:建立3D肺结节检测网络获得重建图象的3D特征;在Pythorch平台上分两步训练CNN(卷积神经网络)模型,a, (结节检测网络),输入信息包括图象和相应的位置附加信息;b, 根据第一步的检测网络参数初始化结节诊断网络,并对输出图象和相关诊断结果进行微调。

  输出模块:在结节诊断网络计算出所有结节的恶性评分后,对其进行融合以得出最后的图象级恶性评分。融合图像级恶性肿瘤评分可用公式Pf=1-(1-p1)(1-p2)…计算。(1-PN),其中P代表结节恶性的概率,N代表结节的数目。

  首先,使用LUNA16和Kaggle数据对模型进行预训练,收集来自广东省人民医院呼吸科放射科,中山大学附属第三医院放射科,佛山市第一人民医院放射科及广州市胸科医院放射科多中心数据进行模型训练和验证。基于多中心影像数据训练后的模型诊断敏感性和特异性分别达到84.4%和83.0%,AUC为0.855。同时可以观察到,随着训练图象样本量的增加,模型整体检测灵敏度,特异度以及AUC均增加。同时我们将该模型算法与Kaggle比赛中第一名算法(Kaggle模型)进行基于第三方影像数据的比较,基于0.757的特异度水平,该模型的敏感性是0.752而Kaggle模型是0.661(见图4A),AUC分别是0.803和0.767。

  针对结节直径大小进行亚组分析(0-10mm, 10-20mm, 20-30mm)比较,可以看到,三个亚组之间均无显著统计学差异,提示该模型早期微结节中同样具有较高诊断准确率。此外可以看到,模型对于腺癌的诊断准确率最高达到85.7%,可能是因为受到整体腺癌占比较高数据偏倚导致。

  此外,我们同时基于前瞻性收集的50例肺部结节CT进行了人机对比,比较了医师团队,预训练模型,训练后模型以及Kaggle第一位模型算法的诊断效力,可以看到预训练模型与医师团队评估结果相近,相比于Kaggle第一位算法两者均具有更高准确性,而该训练后模型无论在灵敏度(96.0%),特异度(88.0%)抑或是准确度(92.0%)上均较其它三者具有更高的诊断效力。

  在这项研究中,深度学习算法应用于肺结节临床检出与诊断的可行性得到验证,尤其该模型在结节检测和分类的能力上表现出了优势。此外,通过与实际人工检测团队,Kaggle排行第一的算法比较,模型使用的CNN算法在结节分类能力上也具有相当不错的表现。

  不同于未使用真实世界数据或病理结果对模型进行深入验证的研究,该研究使用改进的深度神经网络和具有病理金标准标签的大数据集(855例),对基于深度学习的模型的应用进行了优化,并将其推广到真实医疗环境中,使其敏感性和特异性达到了84.4%和83.0%,最大限度地降低了假阳性和假阴性结果。此外,亚组分析显示,其对微小结节的检测效率(0-10mm)与一般结节(10-30mm)具有同等诊断效力。

  同时,该模型的诊断能力也比既往报道的计算机辅助结节检测工具有更高的敏感度和特异度,同时该模型随着数据的增加,能进一步优化其诊断鉴别效能。当然该研究也存在一定的不足,相比于既往研究而言,该研究入组的肺结节均为临床诊断早期肺结节,并非来自于筛查队列的数据,可能无法更真实反映该模型在早期筛查中应用实际效能;其次我们仍然无法很好区分出进展缓慢的早期结节,可能需要更多多次随访影像资料的纳入以更好对早期筛查患者进行分层及指导后续处理方案;此外该模型纳入的数据量相较于其他机器学习样本量仍然较少,还需要在更大样本量队列中进一步验证。

  这项研究使用基于深度学习算法的模型显著提高了早期肺癌检出和诊断的敏感性及特异性,且其诊断效力较经验丰富的专科医师团队更优,显示出今后应用这一类模型算法辅助临床医师日常肺部影像诊断的可行性,同时提高早期结节检出率及诊断率,使更多患者能够得到早期治疗干预,达到早期临床治愈的效果。

  特别感谢所有参与到该研究前瞻性验证的单位(排名不分先后):广东省人民医院,中山大学肿瘤防治所,中山大学附属第一医院,中山大学附属第三医院,中山大学附属第五医院,中山大学附属第六医院,汕头中心医院,深圳市人民医院,佛山市第一人民医院,南京总医院,湖南省肿瘤医院,北京肿瘤医院,北京首钢医院,北京大学第三医院,盛京医院,天津总医院,天津肿瘤医院,复旦大学肿瘤医院,复旦大学中山医院,北京胸科医院,河南省人民医院,河南省肿瘤医院,唐都医院,福建省肿瘤医院,西京医院,浙江省附属第一医院,武汉协和医院。

  根据新京报报道,2018年12月10日,广东省深圳市中级人民法院已受理申请人广东华…

  比特软件信息化周刊提供以数据库、操作系统和管理软件为重点的全面软件信息化产业热点、应用方案推荐、实用技巧分享等。以最新的软件资讯,最新的软件技巧,最新的软件与服务业内动态来为IT用户找到软捷径。

  比特商务周刊是一个及行业资讯、深度分析、企业导购等为一体的综合性周刊。其中,与中国计量科学研究院合力打造的比特实验室可以为商业用户提供最权威的采购指南。是企业用户不可缺少的智选周刊!

  比特网络周刊向企业网管员以及网络技术和产品使用者提供关于网络产业动态、技术热点、组网、建网、网络管理、网络运维等最新技术和实用技巧,帮助网管答疑解惑,成为网管好帮手。

  比特服务器周刊作为比特网的重点频道之一,主要关注x86服务器,RISC架构服务器以及高性能计算机行业的产品及发展动态。通过最独到的编辑观点和业界动态分析,让您第一时间了解服务器行业的趋势。

  比特存储周刊长期以来,为读者提供企业存储领域高质量的原创内容,及时、全面的资讯、技术、方案以及案例文章,力求成为业界领先的存储媒体。比特存储周刊始终致力于用户的企业信息化建设、存储业务、数据保护与容灾构建以及数据管理部署等方面服务。

  比特安全周刊通过专业的信息安全内容建设,为企业级用户打造最具商业价值的信息沟通平台,并为安全厂商提供多层面、多维度的媒体宣传手段。与其他同类网站信息安全内容相比,比特安全周刊运作模式更加独立,对信息安全界的动态新闻更新更快。

  新闻中心以独特视角精选一周内最具影响力的行业重大事件或圈内精彩故事,为企业级用户打造重点突出,可读性强,商业价值高的信息共享平台;同时为互联网、IT业界及通信厂商提供一条精准快捷,渗透力强,覆盖面广的媒体传播途径。

  比特云计算周刊关注云计算产业热点技术应用与趋势发展,全方位报道云计算领域最新动态。为用户与企业架设起沟通交流平台。包括IaaS、PaaS、SaaS各种不同的服务类型以及相关的安全与管理内容介绍。

  比特CIO俱乐部周刊以大量高端CIO沙龙或专题研讨会以及对明星CIO的深入采访为依托,汇聚中国500强CIO的集体智慧。旨为中国杰出的CIO提供一个良好的互融互通 、促进交流的平台,并持续提供丰富的资讯和服务,探讨信息化建设,推动中国信息化发展引领CIO未来职业发展。

  IT专家新闻邮件长期以来,以定向、分众、整合的商业模式,为企业IT专业人士以及IT系统采购决策者提供高质量的原创内容,包括IT新闻、评论、专家答疑、技巧和白皮书。此外,IT专家网还为读者提供包括咨询、社区、论坛、线下会议、读者沙龙等多种服务。

  X周刊是一份IT人的技术娱乐周刊,给用户实时传递I最新T资讯、IT段子、技术技巧、畅销书籍,同时用户还能参与我们推荐的互动游戏,给广大的IT技术人士忙碌工作之余带来轻松休闲一刻。

本文链接:http://homehelp4u.net/juanji/264.html

相关推荐:

网友评论:

栏目分类

现金彩票 联系QQ:24498872301 邮箱:24498872301@qq.com

Copyright © 2002-2011 DEDECMS. 现金彩票 版权所有 Power by DedeCms

Top