设为首页 - 加入收藏
广告 1000x90
您的当前位置:311211黄大仙生肖资料 > 卷积 > 正文

了解CNN这一篇就够了:卷积神经网络技术及发展

来源:未知 编辑:admin 时间:2019-06-03

  【新智元导读】深度学习很火,说起深度学习中一个很重要的概念——卷积神经网络(CNN)似乎也人人皆知。不过,CNN究竟是什么,涉及哪些概念,经过如何发展,真正要有逻辑地归纳一遍,估计不少人都说不清。日前,南洋理工大学研究人员梳理CNN发展历史,从基础组成部分讲起,介绍并探讨CNN在视觉识别方面的原理及应用,是系统深入理解CNN的好文。

  过去几年,深度学习在解决诸如视觉识别、语音识别和自然语言处理等很多问题方面都表现出色。在不同类型的神经网络当中,卷积神经网络是得到最深入研究的。早期由于缺乏训练数据和计算能力,要在不产生过拟合的情况下训练高性能卷积神经网络是很困难的。标记数据和近来GPU的发展,使得卷积神经网络研究涌现并取得一流结果。本文中,我们将纵览卷积神经网络近来发展,同时介绍卷积神经网络在视觉识别方面的一些应用。

  AlexNet 取得成功后,研究人员又提出了其他的完善方法,其中最著名的要数 ZFNet [7], VGGNet [8], GoogleNet [9] 和 ResNet [10] 这四种。从结构看,CNN 发展的一个方向就是层数变得更多,ILSVRC 2015 冠军 ResNet 是 AlexNet 的20 多倍,是 VGGNet 的8 倍多。通过增加深度,网络便能够利用增加的非线性得出目标函数的近似结构,同时得出更好的特性表征。但是,这样做同时也增加了网络的整体复杂程度,使网络变得难以优化,很容易过拟合。

  深度CNN在图像处理、视频、语音和文本中取得了突破。本文种,我们主要从计算机视觉的角度对最近CNN取得的进展进行了深度的研究。我们讨论了CNN在不同方面取得的进步:比如,层的设计,活跃函数、损失函数、正则化、优化和快速计算。除了从CNN的各个方面回顾其进展,我们还介绍了CNN在计算机视觉任务上的应用,其中包括图像分类、物体检测、物体追踪、姿态估计、文本检测、视觉显著检测、动作识别和场景标签。

  同时,为了加速训练进程,虽然已经有一些异步的SGD算法,证明了使用CPU和GPU集群可以在这方面获得成功,但是,开放高效可扩展的训练算法依然是有价值的。在训练的时间中,这些深度模型都是对内存有高的要求,并且消耗时间的,这使得它们无法在手机平台上部署。如何在不减少准确度的情况下,降低复杂性并获得快速执行的模型,这是重要的研究方向。

  智能驾驶技术是汽车行业的重点发展方向之一,同时也是人工智能相关产业创新落地的重要赛道之一。为此新智元联合北京中汽四方共同举办“新智元Top10智能汽车创客大赛”,共同招募智能汽车相关优质创业公司,并联合组织人工智能技术专家、传统汽车行业技术专家、关注智能汽车领域的知名风投机构,共同评审并筛选出Top 10进入决赛,在2016年10月16日“国际智能网联汽车发展合作论坛”期间,进行路演、颁奖及展览活动。

本文链接:http://homehelp4u.net/juanji/195.html

相关推荐:

网友评论:

栏目分类

现金彩票 联系QQ:24498872301 邮箱:24498872301@qq.com

Copyright © 2002-2011 DEDECMS. 现金彩票 版权所有 Power by DedeCms

Top